Integrated 3D Printed Handheld Task Light

3D printing can be accomplished using single or multiple materials. The future of the process includes printing integrated circuits, optics, circuit pathways, heat sinks, fixture bodies and enclosures. Robotics, combined with 3D printing stations, can assemble entire products with no fasteners, no seams, and no human interaction, from a bin of raw materials.

The process involves setting up a series of 3D printers that feed into a main printer that is printing a body. At various stages, the printer is paused, and components are installed into cavities, before the printer continues. This can also include potting of cavities, as well as creating wiring vias and paths for conventional wires to pass through. The finished product would have no seams to leak, no intermediate gasketing to fail. It is an integrated assembly that used no glue or seaming of any type, making the final product durable.

This process can be repeated 24/7, with no staff present, other than to keep the material supplies loaded (also done with automation in the local area of the machine.) Customer orders can then move directly from order entry into the production que, with all available selectable options of color, optic, LED power level, CCT, control interface, etc… since the entire fixture is created from software to real world, with none of the conventional inventory of parts, components, etc… through to assembly operations.

A Simple Example to Illustrate the Process

The following is a design and process I created from raw fixture design to printed, in less than 24 hours.

Continue reading “Integrated 3D Printed Handheld Task Light”