YOL 2015 – D11 An Industrial Tribute to 2015

Posted: March 21, 2015 in YOL 2015
Tags: , , ,
A little industrial chique tribute to 2015 Year of Light.

A little industrial chique tribute to 2015 Year of Light.

Actually, this started as a rough lab test experiment applying thermal transfer pipes (copper pipes filled with water) to move heat from an LED platform to a simple back plane surface. The experiment included bending the pipes, soldering them using silver bearing solder, and operating the system at various angles to see the effect these had on performance. Somewhere along the line, an idea formed of making this into a wall piece, creating an industrial-chic, which led to adding a cut down reflector, and using the SLA printer to create an industrial tech representation of a flame rising from the reflector. The square cut in the diffuser aligns with the connected graphic on the back plane, and the stenciled number 15 simply represents the year.

The graphic alignment with the diffuser negative space connects the back-plane to the foremost diffuser component.

The graphic alignment with the diffuser negative space connects the back-plane to the foremost diffuser component.

The driver is housed in the FDM printed housing below the light source on the back plane, with a dimmer. Total power to the source is 19W, while the LED is 95CRI 3000K. Note that the overly red hue to the background, and slight magenta appearance of the white graphics are all issues with the camera dealing with the red-enhanced LED source, which creates high CRI, with a 90 R9 value, but in reality is a distortion of spectral power that the human eye does not readily see – but mid-range camera image sensor algorithms cannot accommodate.

The diffuser is intended to interpret a flame, or gas light sock.

The diffuser is intended to interpret a flame, or gas light sock.

 

The thermal pipes move 19W of energy from the LED platform to the back-plane - which is where the whole project started.

The thermal pipes move 19W of energy from the LED platform to the back-plane – which is where the whole project started. Cutting the back half of the reflector out provides light to the wall and plate surface.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s