Archive for the ‘Art and Design’ Category

08285I have a fondness for the halogen lamp. From the little 20W bi-pin 12V burners to the 500W double ended monsters, the combination of light quality, simplicity, toughness, light density and versatility filled a special place in the hearts of lighting designers for decades. While there were also  larger iterations of the technology reaching 20,000W, even the most halogen crazed found them to be a bit over the top, setting them aside for special applications. In my own experience, the 20W through 75W 12V burners, 15W through 65W MR16, 35 through 50W PAR36 and 75W through 250W mini-can line voltage lamps hit the spot for a wide range of focused and unfocused lighting product designs. For my personal portable lamp works, the low voltage burners, MR16 and the PAR36 lamps were my favorites. I could create live-structures (where the fixture acted as conductor) using remote 12V power supplies, allowing sculptures to be simple to the extreme.

This simple bridge design was created using building and armature wire, a PAR36 halogen lamp, and a ball bearing counter weight.

This simple bridge design was created using building and armature wire, a PAR36 halogen lamp, and a ball bearing counter weight.

When LEDs arrived on the scene in the late 1990′s, I caught a glimmer of what was to come. By the year 2002, it was obvious that solid-state would be delivering something new, and that the properties of the source technology shared a great deal with the halogen lamp from a lighting perspective, with a huge advantage – far less heat, much tougher and resistant to impact, and very long lived. The only issue was, color quality was initially poor, consistency from LED to LED was awful, and light output per individual LED device was pathetic. This required designs utilize a number of LEDs mounted to circuit boards, wired to drivers that were clumsy at best. The complexity of LEDs in the earlier stages were compounded by the lack of available components, which meant one-off application of the technology was out of reach for anyone not up for custom electronics design. (more…)

To set things off on the proper foot – I do not like complexity when it is not necessary. I’ve noted many times that if energy were free and maintenance was not a consideration, the perfect light source is the tungsten halogen lamp. This technology delivers a very attractive white light, is very easy to control, provides optical focus, and is as simple as it can get. The low voltage versions of this technology are equally attractive, accepting that transformers were a horrible thing to tag onto an otherwise neat little light source. I have made hundreds of lights using halogen lamps, mainly 12V versions, starting back in 1985. It was my go-to light source. I still have boxes of transformers and sockets, acquired over years of making lights for myself and others.

Applying LEDs in efficient lighting designs is no more complex than use of any other source, just more productive.

Applying LEDs in efficient lighting designs is no more complex than use of any other source, just more productive, and attractive than CFL or other conventional “efficiency” improving sources.

That said, there is no escaping that energy is an issue, and maintenance is a pain. The cost of operating halogen technologies is simply impossible to bear. This is why we have HID sources with all their ugly liabilities, and the fluorescent lamp.  While I get HID technology as a giant super-power halogen device, it has always been a clumsy, heavy, messy engineering gadget that sets aside the art of lighting for raw lumen energy. Fluorescent lamps have are a source you are forced to live with, in an uninspired, just-get-lumens-in -the-box sort of way. There is very little to love about their scale, lack of focus-ability, ballast hardware, delicate tubes, and ghastly glow. I’ve specified millions of these lamps into existence, wishing every time there was a better way. I never made a single art light using fluorescent lamps, not because itsn’t possible, but because I never liked them enough to give them that part of my time.

The emergence of solid-state lighting, specifically LEDs, hit me in two ways. One, I get the small controllable source I had with 12V halogen. Second, I get the efficiency and raw lumen potential of fluorescent that made it indispensable. Because of this, the last time I made a light using halogen technology was in 2004, and that product was converted to an LED sources in 2006. For my own use, every halogen light I made from 1993 to 2004 still in use around the house, has been converted to LED. Every new fixture made since 2005 has incorporated an LED light source, without exception. I do not use retrofit lamps. I either tear down and rebuild products to utilize LEDs properly, or design them around LEDs in the first place. (more…)


The Tasca test mule turned 2 years in continual illuminated state this May. That’s 8,760 continuous operating hours in the cold, hot, and messy environment of the shop in which it lives. It gets abused as well, from tossing greasy rags over it to see what happens when airflow over the heat sink is cut off, to blowing coolant on it until it freezes. There have been several lessons learned in this time. For example, lumen depreciation, captured by measuring the fixture’s output, has been negligable. Losses have been less than 1.2% so far, which means the White Optics reflector and anti-reflective glass are doing their job, as is the Bridgelux ES Array LED. Temperature readings taken over this time have not changed anywhere, which indicates the internal construction attaching the thermal slug to the heat sink is durable and reliable. (more…)

When LEDs first emerged, I was one of the many who expressed the opinion that a lighting system that could dim to a warmer CCT, imitating incandescent lamps, would be desirable. I want to take this opportunity to retract that original opinion and thought. I’ve played with it, seen the products available that do it, and have experimented with the approach… and can say unequivocally that I really don’t like it at all.

One of the problems with incandescent dimming has always been the patchwork of CCTs one gets through a space from different dimmer settings for the various products in a room. This has never been a good thing. Further, the change in CCT of an old school incandescent lamp is significantly different than halogen lamps, as it the character of the color. I for one have fallen out of love with the old incandescent lamp long ago. Over the last 20 some-odd years, I have come to use halogen sources over all incandescent forms, preferring the cleaner white color over that yellowy dinginess of the incandescent lamp. Incandescent lamps (non-halogen) produce a decidedly ugly color that I personally feel is misrepresented by their high CRI rating. The fact that the CRI formula will show a dimmed incandescent lamp with the same high CRI number, even when it very noticeably distorts color in a space, is a condemnation of our poor color performance metrics, not an indication of this lamps superior color performance. (more…)

Working with Molex Electronics, the ZEBRA Alliance, Oak Ridge National Labs, with fixtures provided by Ultralights and Solid State Luminaires, we created a side-by-side comparison between CFL and LED in two identical homes. One uses 100% CFL lighting, the other 100% LEDs. The LED house uses Molex Transcend modular products, which incorporate 4W Seoul Semiconductor Acriche 120VAC LEDs to control costs. While the CFL home was designed by a lighting showroom, the approach in the LED home included redressing lighting design to reduce and elliminate glare, focus on delivering light where it is needed, and producing more attractive spaces that also save energy. The end result is a 70%+ savings over the CFL home. The LED home has less than 0.4W/s.f. of connected lighting load. So little energy is connected, that the entire home could have been wired to a single 15A circuit breaker (920W).

The purpose of this project is to operate both homes with controls that simulate occupied operation over 18-24 months. Over that time the performance of the two homes will be monitored using a sophisticated array of sensors and data aquisition. Lighting is just one small part of the total effort, which includes building materials, HVAC, window glazing, and roofing system performance. There are four total homes, all with identical geographic orientation, within a block of one another. The other two utilize fluorescent lighting, but are different in many other ways, including architectural design.

Below are a few of the rooms of the houses to give you an idea of how the combined approach worked out. As one can see, the difference in appearance is noticeable. At the task level, the LED house provides twice the horizontal illumination on kitchen counters and dining table, matches the CFL in the game room and office (not shown here), and provides a more comfortable light everywhere, as the light sources produce no objectionable glare. So, regardless of the LED employed not being a leading edge lumen/watt producer, the savings remain significant, while the end product – delivered illumination – both attractive and comfortable. This is an approach that will eventually set LEDs up as the preferred light source in residential application – not matching CFL glare bombs, but delivering an improvement in lighted quality as well as energy saving.

For those attending the LEDs 2010 conference this month (Oct 25-27) in San Diego, I will be presenting this project with some background and more detail there.  Stop by and say hello if you are in the area:

Entry CFL Lighting

Entry LED Lighting

Living CFL Lighting

Living Room LED Lighting

Dining Room CFL Lighting

Living Room LED Lighting

Kitchen CFL and Linear Fluorescent Lighting

Kichen LED Lighting

The Molex Helieon module with Bridgelux array won the “Most Innovative Product” award, the highest honor one can achieve at Lightfair!

As a consultant to Molex on their entry into the SSL arena, specifically on the Transcend and Helieon projects, I can offer that the effort put into understanding the lighting market, and how SSL can be applied within it, has been impressive. Seeing them take the prize was a thrill for me personally, and certainly for the groups at both Molex and Bridgelux. Playing the role of “Lighting Guy” in this group of exceptional electronics and mechanical engineers, who tackle connector problems in everything from cars and consumer products to computers and spaceships, I’ve experienced a development pace unprecedented. The combination of optics, tactile feel, simplicity in application, and potential for further expansion of capabilities, the Helieon is just one more example of what a market leading connector manufacture can do for the lighting market.

In Architectural SSL we’ve continually pressed for modularity as an important and necessary component in the furthering of SSL deployment. In 2010, this appears to be the year for just such development. The Xicato, Cree’s introduction, Philips Fortimo, and GE, along with Sharp, and the GX53 socket for SSL by BJB, and the Helieon, all offer significant improvements in the way LEDs will be incorporated into products. On top of this, manufacturers, such as Solid State Luminaires, have incorporated modularity into the construction of their latest downlights and other products. Modules have finally arrived – with the Helieon taking top honors as the leader of the pack.

The snapshots below are from the show display, where Lumenique fixtures were used incorporating 45 Helieon modules used to illuminate the display.

01/07/10 – And now for something completely different. Ever heard of Steam Punk? It’s a design vocabulary founded on Victorian styling blended with technology as it might have been had we not moved into micro-electronics. Time machine movies are excellent examples of the aesthetic. Applying this to an SSL product just seems too ironic not to do, so this will be the week two project. This one is going to use Bridgelux 400lm LED arrays as uplight and downlight, within a pivoting head. Driver will be from Luxdrive, and operated at 1A. Control is going to be via placing a plumb bob in one of three sockets, which will control the driver dim level. Finishes will be powder coat red, powder coat black, polished aluminum and polished brass. This one is mostly lathe turnings, my favorite tool.

Bent part - tip of vertical members

01/11/10 -  Got a lot of parts made and some details figured out. Had a bit of an issue with the ball turner, which decided to grab a part and bend it over on me. Really a pain since the ball is the last thing you turn after cutting the rest of the part. Had to re-invent the tool a little before I trashed another blank, then started all over to replace the bent part. Been making a few adjustments in detail as I go through each part – some to fit materials I have in stock and to improve detailing, since there is nothing quite like having the metail in hand to fine tune detail. Working the light heads now – a lot of stuff packed into a somewhat small space. Last bit to work out is the swivel so it will hold the head in place and not sag, but will be easy to adjust. So far so good. The Bridgelux LEDs put out so much soft light, this one should make a nice general space illuminator, with back/uplight and down/tasklight.

01/15/10 – Been a tough week, but the project is progressing. Just finished the base plates, have the vertical conductor towers ready to finish, have figured out how to make the controls work properly, and have the head 90% complete, just need a couple of holes drilled and everything is ready to finish. While the target is to finish each of these on Thursday or Friday of each week, projects like this one are abit more complex, so will take a day or two longer. By the end of the day today, everything on this will be in finishing, with assembly tommorrow (Saurday), just in time to startweek 3, which has already beed designed. This is going to be tough to keep up with, and requires I think clearly and not make any serious mistakes that eat time.

Cllick on the image for a larger view

So… the first week went well enough. Even with taking time off for the holidays, working in a deep freeze workshop, and managing to mess up several blocks of metal, I managed to get this one done. I’m also breaking in a new powder coat oven and learning to use a couple of new tools, like a virbatory deburring machine that works away at the sharp corners and file marks while I get on with other work. Generally this one worked out about as I had invisioned, except for shortening the arm a little. I’m also thinkin that the next iteration of this will use finishes a little differently. I’ve created a matte white powder finish I really like the look and feel of, will need to find more places to use it. In any case, with this in the done file, its time for a couple days to regroup and get into the next one.

I’ve got an idea in mind for use of Bridgelux 400lm LEDs in a steam-punk looking design that will light up and down, providing good ambient as well as accent downlighting. Something a bit less edgy, maybe use a lot of lathe turned parts and do a little polishing. Might even use some brass I have on hand for just such a purpose.

52 in 52 Design One Specification Brief

24″ wide x 20″ tall
Lynk Labs 12W Snapbrite strip (12VAC) on SnapDriver power supply
Custom switch design and fabrication
Tumble finish aluminum with clear gloss topcoat, wrinkle black and matte white finishes

More images and details available at: D1 of 52 at Lumenique

Let me know what you think!

12/30/09 – This is the first of 52 designs for the year. I thought about posting a drawing or rendering of the complete design at the start, but what is the fun in that? Instead, I’m including a few sneek preview details that will be included in the final design. To see what the finished product, both in-process and completed, you’ll just have to follow along, or wait a week. Design One is a fixed head architecturally styled task lamp for a desk or side table. It’s going to be around 20″ tall and extend 28″ horizontally. It will use a Lynklabs 12″ SnapBrite LED strip with 12 Tesla LEDs, powered by the companies BriteDriver 12VAC power supply, provided as samples to me by the company. This will deliver roughly 200fc onto the task surface. The finish will be black textured and matte white high reflectance powder coat (my own formulation), with satin and polished aluminum accents. I plan to get most of the rough cut parts machined this weekend, so stay tuned!

01/04/10 – All design, machining, and mock up of rough components completed. Ran into a little snag finding a proper switch, so made my own from a proximity control and Delrin block. Had to remake the block at the top of the main column three times due to the length of the drilling horizontally for the support rod which went in straight and came out off center. Also fussed with the length of the arm -  cut hree inches off it to balance the appearance of the assembly. Man, is it cold in the garage where my machining equipment is. Had to take a couple days off due to temps in the single digits, which makes the oil so stiff the machines struggle. The rest of the process can be done in the sheet metal and assembly area, which is heated. Going to have to get a better heater in the machining area.

In response to a growing sentiment that “playful” design is doomed due to the demand to cut energy use, that we must give up quality to cut watts quantity. I could not disagree with this more. In fact design plays a much larger role in cutting energy use than anyone is, giving it credit for. In fact, I contend that design of an application plays a larger role than reaching for some ultimate efficiency number. The two renderings shown here were created in AGI32 using photometric data from available LED products. The effect of design on the quality of a space and its energy use are clearly illustrated. The only factor changed between these two renderings is the lighting system applied. All other factors are identical.

This "efficient" design uses products that generate high efficiency ratings, and meets the illuminance requirements necessary for vision. Yet, there is not a lot of interest here - the space just looks flat.

72Watts - This "efficient" design uses (6) 12W"high efficiency" luminares rated at 52 lumens per watt to meet the illuminance requirements necessary for the space - an average of 12 Fc throughout. Yet, there is not a lot of interest here - the space just looks flat. There is very little focus or dimensional definition beyond the physical objects themselves.

    40 Watts - This space uses more luminaires with narrower beam spreads, and lower efficiency - but of smaller wattage each. The result is greater definition of the space, more visual interest, and an energy savings of 48%!

40 Watts - This space uses (10) 4W medium efficiency luminaires at 39 lumens per watt, but much narrower beam spreads. The result is lower average illuminance (5Fc) but greater definition of the space that reinforces vision within the 3D space. Further, there is more visual interest and a central focus. Best of all - there is a realized energy savings of 48%!

Don’t buy into the baloney that energy conservation requires one must eschew design. Instead embrace the use of artful application of light to reduce the amount of light being thrown into a space from luminaires with poor control but high efficiency – use less light, with greater focus onto target surfaces. The art of lighting design is about design for vision, not meeting prescribed illuminance levels on some plane above the finished floor. The best designs create the most interesting and visually attractive space with the least amount of energy. We do not want to live in a world where the only qualifier of efficiency is the luminaire manufacturers data sheet above all else. Not only will this lead to greater energy consumption, it will reduce the quality of space we all live within for no reason. We need more design, more interest in the application of light, and less influence of purely empirical calculation.

Design has been devalued by those who believe lighting is something to be applied to meet minimum standards, that “effect” is a luxury that we can live without. This is why we live in offices with uniform illumination levels and flat surface rendering that gives us all headaches and eye strain. We know we don’t like it, ut live withit it. Why? Dynamic vision is created as much from the design of dark releif within a space, as it is from applying light onto horizontal planes within a calculation tool. The difference in these renderings are subtle in 2 dimensional presentation. In the 3D space we all live within, the effect is far greater and more readily felt and seen. With a greater degree of design expertise, we can realize greater energy savings AND an improvement in visual performance and quality.