The 3D printed shade was an interesting experiment. Can also print in red or blue plastic.

The 3D printed shade was an interesting experiment. Can also print in red or blue plastic.

In playing with the Philips Hue system, we found wireless controls to be an effective means for solving lighting issues we have around the house. One area is the main stair. While the overhead track lighting system does a fair job lighting the art on the walls, it is a bit much when all we want to do is have a little light to navigate by. I also wanted to have the light turn on and off automatically, to provide a level of ease, and to get rid of the issue of forgetting to turn off the stair lighting on the way to bed.

The view from the floor below.

The view from the floor below.

Applying a wireless light, programmed to turn on-off and dim is a great addition, and an opportunity to create a new fixture while I was at it. The added feature of color changing to suit the lighting mode is a serious bonus and a lot of fun. Since the light from the stair itself is visible through a window facing the street, the effect of color here creates an interesting effect from outside as well. This design explores printing translucent materials for creating the shades, in addition to printing the rest of the fixture from ABS overall. The design itself is a bit freestyle, mixing a little Art Deco with Hi-Tech, influenced a little by American Indian… The light source is the Philips Hue A-style lamp, which has been modified through the addition of a bottom shade closure to hide the light source from below. The challenge with this design was to hide any direct view of the light itself, as at night the brightness was too great. I would like to have eliminated the cord connection, but tearing the stair railing apart to drill a wire channel through it was not on the agenda.

The 3D printing process (FDM) adds texture to the shade material.

The 3D printing process (FDM) adds texture to the shade material.

Now, we let the light run its program, and don’t have to remember to turn things off when retiring. We can also use the light to create a visual presence when we are out and away by setting different on-off times, color effects, etc… which from the outside, looks like things are moving and changing inside.

Deco-Tech is the best I can come up with to describe the design vocabulary used. It's really just freestyle.

Deco-Tech is the best I can come up with to describe the design vocabulary used. It’s really just freestyle.

Interesting note about color in this application. The very low blue light level makes seeing things in the stair when no other light is present very easy, so the level can be set low. Yet, this setting is easily ignored, and does not feel like a light on in the hall. I’m not concerned about the blue color interfering with sleep or melatonin suppression in this application, simply because the total energy we are talking about is so low (<.1 Fc).

Unfortunately, digital cameras have a hard time dealing with saturated colors, so this photo fails top show what this actually looks like (blue lighted portion). You can get the idea though, and having it cycle slowly through different shades is very pleasing.

Unfortunately, digital cameras have a hard time dealing with saturated colors, so this photo fails top show what this actually looks like (blue lighted portion). You can get the idea though, and having it cycle slowly through different shades is very pleasing.

warm

I was hoping to get a better image of this with the setting at 2200K and some saturated colors. Unfortunately the camera is fighting me, so I’ll just leave these with you to suggest how the fixture looks in other than white settings.

 

For this design, I incorporated the Philips Hue wireless control and RGB tape light into a simple fixture stand that can sit against a wall or in a corner.

This is the basic setup. A base plate, ball sockets, and wands with RGB LED strips in each.

This is the basic setup. A base plate, ball sockets, and wands with RGB LED strips in each.

Basic Details:
The wands are mounted to a ball, machined from brass, that sits in sockets printed in ABS plastic. At the tip of each wand is a printed ABS clear plastic diffuser that extends the color just beyond the tip of the metal housing. The housing is a U-shaped aluminum channel that the tape light was installed into.

The mechanical arrangement allows the wands to be tilted and twisted to create different arrays, that, when mixed with color effects, create many different finished “looks” that can be easily changed and reconfigured, either by moving the wands or programming the colors.

This is the wands array in fan configuration placed in the corner of our media room.

This is the wands array in fan configuration placed in the corner of our media room.

The Fun:
The Philips Hue system utilizes a wireless hub (located in another room connected to our in-house WiFi network) to allow any smart device, iOS or Android, to control the effects. These effects include selecting basic color mixes using simple app software, or more complex scenes, and disco effects. There are at least a dozen apps available for the system now. I chose the Pro version of the app, that allows me to set up groups of colors (the wands use three separate channels, plus three others we have in the house). This allows each one of the individual wands to be controlled separately, as well as in a group. I also use another app, called Hue Disco, that includes fading mood washes and functions, as well as disco lighting effects that respond to music being played.

In this arrangment, the wands are aimed at random agles to one another to twist the blend of light into the corner.

In this arrangement, the wands are aimed at random angles to one another to twist the blend of light into the corner.

Color is an addictive addition to entertainment and feature spaces, that produces an impression of flow and movement that white light just does not deliver. In this case, I included the lighted tip on each wand to create a sense of origin at the top of each stem, which is many arrangements, creates a sense that the light is flowing out of the wand from the tip down, like water from a fountain. Since the wands themselves hide the light strips completely, there is little to break that illusion.

Arranging the wands and placement of the base creates the final effects, and sets the stage for the use of color mixes, blends, changing routines, use of disco effects to suit ones tastes. I personally like the slow color changing effects, which fade from one color to another within a pre-selected pallet. In the morning, the flowing of warm color blends was pleasant as the sun rose, while at night with the TV on, blue and magenta blends seemed a nice complement.

Since the wands can be re-arranged on a whim, it’s likely that I will move them around occasionally just to freshen things up, while the apps that control the color and effects give me plenty to tinker with in creating moods and color effects to suit the day, the season, or just kill a few minutes when nothing else is going on.

The images that follow show the wands arranged in different configurations, with the colors changed using a smart phone. I’ve come to find this a great deal of fun, and plan to apply it, and similar approaches into future designs in the 52/52 project. Wireless control is a fantastic way to control products like this, as it requires no wired switches, knobs or buttons. I also like being able to program this fixture and other lights in the house surrounding it to change on schedule, shut off automatically, and turn on/off for nightlight and security duty, easily and effortlessly.

Fan arrangement, set into a corner with RGB and blue color modes. These can also be cycled or left static.

Fan arrangement, set into a corner with RGB and blue color modes. The wands at the right and left are turned toward the walls, the center wand into the corner. The colors can be cycled or left static.

Fan wand arrangment as above, but with pastel colors, warm white and sunset tones

Fan wand arrangement as above, but with pastel colors, warm white and sunset tones

Wands in a Vee formation, all aimed at a slight outward angle to the the wall.

Wands in a Vee formation, all aimed at a slight outward angle to the the wall.

All three wands aimed into the corner for a perspective view

All three wands aimed into the corner for a perspective view

Wands arranged into a vectored arrangement, aimed directly at the wall.

Wands arranged into a vectored arrangement, aimed directly at the wall.

In this arrangement, the wands are spread and tilted away from the wall, with each turned to overlap light toward the center of the wall, to blend the color effects.

In this arrangement, the wands are spread and tilted away from the wall, with each turned to overlap light toward the center of the wall, to blend the color effects.

 

D2-img-4

D2 Front View

This weeks project is a concept model exploring an organic form of twisted and tapering ellipses. The height is 24″, and it measures roughly 3 1/2″ x 2 3/4″ at its base. The design is intentionally simple, utilizing a single LED strip concealed behind a valence to one edge. Total power at full brightness is 5 watts, and output is roughly 400 lumens total. The interior is covered with White Optic material to create a diffuse soft edged luminance from within. There is a simple stem dimmer control at the base circuited in series to the light strip, and a two position switch to the side providing full-on / off / dim settings. This model is powered by a wall-wart 24VDC power supply.

This was printed on a 3D printer, sanded smooth and painted matte white. In a production version casting the body in ceramic with a matte glaze would render a more finished end product. Low power LEDs don’t require much thermal management, can be circuited with on-board micro IC current control driver, creating a very simple to assemble and economic end product. Even in this plastic concept model form, the costs of the entire assembly were under $200, with the power supply.

D2-Img1

D2 3/4 View

D2 View 2

D2 View 2

D2 Back

D2 Back

D2 Top

D2 Top

D2 Base

D2 Base

 

The Purple Light ‘UV’ Cure Cube

The Cure Cube is used for curing SLA 3D Prints created on the Form Labs 1+ printer. Exposing SLA prints to 405nm "UV" light increases strength and creates a harder surface for final finishing.

The Cure Cube is used for curing SLA 3D Prints created on the Form Labs 1+ printer. Exposing SLA prints to 405nm “UV” light increases strength and creates a harder surface for final finishing.

While not particularly visible to everyone in the SSL universe, over the past few years one area of interest in LED product development for me has been in use of 405nm LED light sources to cure various plastics materials. The advantages are lower power requirements and reduced overall heat in the cure zone over conventional fluorescent or HID light sources. This has been of particular interest in curing fiberglass resins manufactured by Sunrez. The typical demand is for between 200 and 1,000 µW/CM² at 400-405nm wavelength. The use of LEDs allows us to generate exactly that without the waste of visible light, and longer wavelength power the resins are not reacting to. In one project, we were able to replace a 1,500W HID light source with a 120W LED light system that produced faster cure times with less than 10% of the total power, and virtually no heat added to the heat generated by the resin’s exothermic reaction to the curing initiator. Since then, we’ve built 405nm light cure fixtures ranging from 1,200W to 25W.

In this case, I needed to cure 3D prints we generate on a Form Labs 1+ 3D SLA printer, and do so in an office environment without exposing other materials and occupants to UVA light output. The material used in the print process is acrylic based, with chemistry that is photo-reactive to 405nm. The actual prints are made using a UV laser source. When the part is removed from the printer it is washed in alcohol (91% IPA), rested for a few hours to dry the alcohol off, then placed in this cure cube for an hour or more, depending on the thickness of the final component. The end result is a hard first surface for finish sanding or painting, if necessary, and a more rigid part as a whole (less flexible).

The cube is simple, with vent reliefs top and bottom to encourage ariflow. The flush switch on the top cover was created using 3D printing processes for the slider and body, as well as top and bottom cover.

The cube is simple, with vent reliefs top and bottom to encourage ariflow. The flush switch on the top cover was created using 3D printing processes for the slider and body, as well as top and bottom cover.

The cube utilizes a simple aluminum housing, with FDM 3D printed top and bottom covers. The top cover houses a single Recom 500mA driver, slide switch and wiring terminal block on a Tasca LED driver circuit board.

5mm 450nm LEDs with a FWHM distribution of 60º, 25 per side and top (125 total), operating at 20mA each, mounted to custom circuit boards sourced at Express PCB. Each board connects the LEDs in parallel, while the boards are connected in series, resulting in a 500mA, 15.4V circuit, totaling 7.7W. The boards and internal exposed surfaces inside the box were then covered with White Optics 98 matte material to increase total light energy and diffuse The light energy at 405nm is roughly 600 µW/CM².

The bottom surface includes a glass plate where the product sits in order to make any possible stickiness of a part from adhering to the White Optic material below.

The interior of the cube is covered with White Optics 98 material for optimizing light energy re-cycling.

The interior of the cube is covered with White Optics 98 material for optimizing light energy re-cycling.

The housing was powder coated matte black polyester to make clean up easy and the box look nice. The overall interior dimensions of the box are 1″ larger than the total build volume capacity of the printer itself (5 x 5 x 6.5), as any over-sizing is unnecessary. This produces an optimal match between the location of the LED sources and any part the printer can produce.

The Cube is powered by a remote plug mounted 24VDC power converter.

The operation of the box is simple enough. The box is lifted up, the part is set on the base, the box is set over the part, and the light is turned on by sliding the switch to the on position.

Simple and compact is the order of desktop manufacturing, and this fits that model perfectly.

A look into the box lighted up and ready to accept parts.

A look into the box lighted up and ready to accept parts.

Testing so far has shown the cube can cure raw resin from liquid to fully hardened in less than an hour, and strengthens prints in that time or less. The heat generated from this arrangement is so small, there is no chance of any part being warped or affected by the process, other than the desired results of becoming stronger.

For parts to be left unfinished, that are desired to be used over extended periods, we coat the finished parts in either acrylic or polyurethane UV inhibiting clear coat, gloss or matte. This stops ambient room light or daylight exposure from making the parts brittle over time. I am building a second copy of this cube for completing extended testing of samples of the materials we are using to verify clear coat effectiveness, behavior of the print material over long exposure periods, and the behavior of these low cost LEDs over time. A commercial version of this cube could be made using more robust LEDs, but the costs would be significantly higher as well. In the current configuration, the LEDs only cost $0.60 each, so should they last a couple of years in use, replacement of the populated boards is a simple task, while the cost of higher power LEDs would have increased the cost of the entire end-product by as much as three times.

There is also an additional version of this same approach in using Red/Blue light sources for use in plant seedling starts. We’ve found tests with common rye and barley grasses, the time from germination to hearty growth ready for planting is accelerated significantly. Using an enclosure like this allows the plants to be exposed to intense light for extended periods of time (18 hours or more) without polluting the surrounding environment with the ugly light, just as the enclosed cube protects room occupants from exposure the the UVA light. In either case, the cube can be used in any room environment comfortably and safely.

So this gets us off the ground and is D1 of 52 in the series. As I’ve noted at the start, this is an exercise in making progress, and putting SSL to work. This is not a particularly exciting product in and of itself, but it is one that will be used regularly, which more than makes up for its lack of marketing sizzle for the masses – at least in my book.

 

2015 is the International Year of Light and Light-based Technologies – a United Nations observance to raise awareness of the achievements of light science and its applications, and its importance to humankind. 

With that in mind, I’ve decided to engage in another cycle of one SSL product creation each week, or 52 in 52 weeks. This will be similar to what I did in 2010, and will include whatever suits the moment as the year progresses. In the previous project I blended personal work with customer projects, exploration of available technologies, and a few humorous gadgets.

In 2010, we explored everything from steam punk to toys and practical tools. 2015 will be more of the same with a 3D twist.

In 2010, we explored everything from steam punk to toys and practical tools. 2015 will be more of the same with a 3D twist.

This time around, I will be combining work with solid-state light sources with another emerging and revolutionary technology we started working with in 2010 – 3D printing technologies. I now have (3) such printers on hand, including a commercial FDM printer, a desktop FFM printer, and a desktop SLA printer. With these, we can now make translucent and transparent prints, including simple optics, flexible parts, and smaller, highly detailed components and mold patterns for casting in metal and urethane. I’m anxious to put these to work in creating interesting final forms. I’ll also be firing up the glass kiln a few times, and hammering out a few pieces in the blacksmith shop to keep things interesting.

So, stay tuned. In the next few days, I will be posting my first entry to start the ball rolling with something for my shop, that others in the 3D print business may find useful.

Happy New Year to all, and to the Lighting Community – it’s our year.

Let’s have some fun with it!

While the proponents of LED technology in the US market have felt safe under the House Bill HR6 (see prior discussion – the supposed incandescent lamp ban) since 2007, much of the power of the federal government to enforce the law has been stripped. This month was yet another blow to the cause, with the latest budget compromise for 2015 “Cromnibus” continuing a ban of more critical import: The continued ban on federal funding for enforcement of the efficiency standards set out in HR6. A summary of the latest inclusions in the budget bill can be found at Reuters. The relevant summation is as follows:

It also prohibits funding of the Energy Department’s enforcement of controversial light bulb efficiency standards, which ban higher-wattage incandescent bulbs.

Other summaries can be found elsewhere, like the Washington Post:

The bill once again prohibits new standards that would ban the use of cheaper, less energy-efficient incandescent bulbs. The proposal was first introduced and set in motion by the Bush administration, but the Obama White House allowed the change to continue, despite sustained consumer demand for older bulbs.

… and the National Priorities Project:

Energy & Environment
  • Continues a trend of declining funding for the Environmental Protection Agency, which will lead to the lowest staffing levels at the agency since 1989.
  • Prohibits the use of funds to require manufacturers to phase out production of incandescent light bulbs.
  • Prohibits President Obama’s requested increase in funding for renewable energy research.
  • Prohibits funding for the Green Climate Fund, an international effort to address climate change.
  • Increases funding for nuclear energy programs, especially research.
  • Increases funding for fossil energy research and development.

Note that when it comes to energy, the Federal Government is not a progressive body in any form of the word or concept.

What’s my point? Simple… When one depends on a Federal action to ram through change, or to back ones project, marketing scheme or pipe dream, one must be aware that, when it comes to energy policies, the Federal Government has a bad habit of reversing itself, or saying one thing and doing the opposite with a straight face. My arguments against prioritizing SSL deployment on a massive effort into the headlong rush to retrofit incandescent sockets, founded primarily on the advertised claim that the incandescent lamp was being outlawed, were not laggardly, they were realistic and pragmatic. Consumers are not buying the energy efficiency saving money story (they spend more on smart phone service each week than electrical energy costs over a month),  they don’t get $9.00 light bulbs that look goofy, they are extremely resistant when feeling forced to change by a government they distrust – while the laws attempting to cut incandescent lamp use are essentially just words on paper, with zero backing to enforce.

For this reason, we come back once again to the need – no mandate – that for SSL to succeed, it must stand on its own two feet, it must deliver new value, and it must deliver as promised. I covered this in the post about quality being critical to success in Without Quality – LED Retroifts Will Fail . I also covered the HR6 issue and it not being the free ride at its core. I have also shared my view on retrofit lamps to the point of being a bore on this topic.

So, how do we deploy a technology many of us know is the future? the first step is to ween the entire industry from its ties to any federal mandates or programs. If you have to rely on a government to ram your products down customers throats, your product is garbage, and will never be accepted beyond compliance with a law. This is not how you build a revolution in any market. Lighting being a low enough priority on the general populace, all that being achieved in the current trend of marketing for solid-state lighting is impressing upon customers who know little of the real potential of lighting in their lives is this:

  • Lighting sucks energy from the power grid – which is bad. We must stop this parasitic draw on our national resources before it destroys the environment.
  • The incandescent lamp you love for its light and low-cost is the enemy and is being taken away from you by law, since you are too stupid to choose better for yourself.
  • While replacements to incandescent lamps are expensive by a factor of 9, produce poorer light quality, are strange-looking, don’t fit into your fixtures, don’t dim when you want them to, and flicker… you’re just going to have to live with it, because they are the future.

While commercial customers must live with energy code demands causing uncomfortable compromises, the consumer market is not as motivated. In fact, every architect, interior designer, lighting designer, building owner, decision maker, comes home as a consumer. While they are obligated by law to comply with energy use codes and accept the impact of this on their commercial spaces, when they go home, they don’t feel the same pressure to comply. In fact, they may act at home in ways opposing what they are forced to accept in business. The general consuming public only knows that laws forcing them to do anything against their own will are to be complied with under duress. When those laws have no teeth, they are ignored.

For these reasons, the success of SSL in the consumer market comes down to adding value and selling the technology without connecting it with a federal mandate or law. I am of the personal belief that the surest way to end or significantly delay the deployment of a technology is to make it law. The best and only real foundation on which to base the deployment of a technology like SSL, is to deliver value so compelling that consumers flock to it by choice. That has not been the case with LED retrofit lamps, which have been horrific in quality, extremely high in price, and poor substitutes for the low-cost lamps they propose to replace. In Europe, reputed to be far ahead of the US market, has been revealed to be avoiding LED and CFL lamps, preferring the halogen based replacements to their disappearing incandescent lamps. Makes perfect sense to those who know lighting. Halogen lamps deliver the same qualities as incandescent, some improvement in efficiency, and a way around adopting the less attractive higher technology alternatives. And the response to this revelation in the EU? More call to action to force consumer behavior. No demand that alternative products be made to deliver higher quality light, add value to support their existence.. just more demands for mandates and laws to force something the market is naturally rejecting into existence.

So, with the Federal Government once again failing to back its play on the lamp ban, including de-funding enforcement of manufacturing bans, it comes down to the very essence of marketing products. Sell value. While energy efficiency is a value, it is not the reason we buy lamps. energy consumption is a by-product of what we want when we buy lighting. We buy light fixtures and lamps to deliver light, of a quality we find acceptable, that serves our visual need to see when no other natural source is adequate or available. We accept that we must put energy into them to get light out. The same can be said of lamp life, another byproduct of extracting light from the product over time. So, basing value on reducing the by-products of realizing the core values being sought is simply bad marketing. It’s how the US auto industry failed when it attempted to sell junk cars that got great mileage, while the Japanese and Germans sold cars that were reliable and fun to drive, that also got great mileage and were cheap to maintain. A more robust program for lighting products would be able to state:

  • Delivers a higher quality of light than you have ever experienced in comfort, color appearance, and enhanced visual performance.
  • Reduces eye strain and associated headache, dryness, and discomfort caused by flicker and glare.
  • Produces a smooth, beautiful light beam pattern with no hot spots, rings or glare.
  • Fits into any fixture designed around a standard lamp, open or enclosed, with improved overall appearance without compromise – or replaces an outdated fixture with something new and fresh, delivering an attractive product that delivers light that is exceptionally attractive.
  • Dims smoothly from full to nothing, with no flicker, stutter, or cutoff, using familiar dimmer controls.

That will get SSL place at the table to then press the case of less energy use and longer service life to justify a small price premium. But, reading through the list, how many current LED retrofit lamps can make this collection of claims? Missing one or two means compromise, as halogen replacements are available that can nail all of these claims, at a very small premium, delivering a level of energy-saving and longer life.

With the Federal Government once again demonstrating its lack of support for its own force feeding program, and a conservative agenda almost assured to whittle that down further in the next few years – for those in the business of deploying SSL technology and product, it is time to truly engage value delivery beyond dependence on the dope of legal compliance. The technology is capable of delivering all of the real values being sought by lighting customers, and more. Let’s build the future on those values, and leave the government to its dysfunctional self. The sooner we can make lighting an industry of self-sustaining excellence, the sooner we can be free of impotent legislation that only creates negativity as its sole contribution.

My first LED fixture - 2004-2006

My first LED fixture – 2004-2006

This is my last bit of housecleaning from blogs being shut down, for the archives. KLW

This fixture is my very first LED light. It started life to be a halogen fixture in 2004, that sat on a workbench waiting completion. The first head got so hot from the 50W 12V light source, it was dangerous, so it sat as I decided what to do with it.

In 2005, as LEDs became viable for lighting, I pondered using them to replace the halogen source, but they delivered so little light, the end product was useless as a desk lamp, so it sat some more. One idea was to insert a Lamina BL3000 LED into the head, but the driver was huge, the light output too little, and the heat still an issue.

Then, in early 2006, while at Visa Lighting, Don Brandt (an engineer working with me at Visa, formerly from Emteq, now working at Cree I believe) were talking through ways of applying the latest mid-power LEDs using a simple PCB. We decided to give it a shot and built a board populated by a vendor with 8 Nichia LEDs. The inspiration struck to power these LEDs with two Xitanium drivers, which at the time were un-potted prototypes, so cutting them out of their housing to be installed in clear tubes to show their interiors off was easy enough. Two push-button switches activated the drivers for a high-low effect, and a heat sink was made up of a machined aluminum block installed in the head where the original halogen lamp and reflector once lived. More details and images of this can be found on the Lumenique archives for the Ratchet fixture.

The fixture itself is made of welded steel structure with a brass head and fiberglass tension springs. The head can be raised an lowered with a ratcheting action, staying level at any height. In the end, I left this fixture with the owner of the Oldenburg Group (owner of Visa Lighting) as a parting gift as I moved on to focus on Lumenique and SSL exclusively.